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HIGH-TEMPERATURE CHEMICAL KINETIC STUDY OF

THE H2 -CO-CO 2 -NO REACTION SYSTEM

Casimir J. Jachimowski

Langley Research Center

SUMMARY

An experimental study of the kinetics of the H2 -CO-CO2-NO reaction system was

made behind incident shock waves at temperatures of 2460 and 2950 K. The overall rate

of the reaction was measured by monitoring radiation from the CO + O - CO 2 + hv reac-

tion. Correlation of these data with a detailed reaction mechanism showed that the high-

temperature rate of the reaction N + OH - NO + H can be described by the low-temperature

(320 K) rate coefficient. Catalytic dissociation of molecular hydrogen was also an impor-

tant reaction under the test conditions.

INTRODUCTION

Interest in predicting nitric oxide emissions from combustion devices such as gas

turbines, flame burners, and jet-stirred combustors has resulted in the formulation of

various analytical reaction schemes for nitric oxide formation (refs. 1 to 3). Most of

these schemes are based on a mechanism in which nitric oxide is formed primarily

through the nitrogen-oxygen reactions,

O+ N2 - NO+ N

N + 0 2 - NO + O

with the reaction between the nitrogen atom and the hydroxyl radical,

N + OH - NO + H

being of some importance in fuel-rich mixtures. The accuracy of these reaction schemes

depends on the accuracy of the rate coefficients for these reactions. The rate coefficients

for the nitrogen-oxygen reactions are known very well (refs. 4 and 5). However, high-

temperature rate coefficient data are not available for the reaction between nitrogen atoms

and hydroxyl radicals, and the rate coefficient currently used is based on measurements

obtained at 320 K (ref. 6).



The purpose of this study was to examine the validity of using the low-temperature
rate coefficient for the reaction between the nitrogen atom and the hydroxyl radical at
temperatures typical of combustion reactions. Because it was not experimentally fea-
sible to generate sufficient levels of nitrogen atoms at temperatures below 3000 K, a
direct study of this reaction could not be made. Instead, the reverse reaction,

H+ NO - N+OH

was studied, and the forward rate coefficient was obtained by assuming that the forward
and reverse rate coefficients are related through the equilibrium constant.

The experimental study was made by shock heating a mixture of hydrogen, carbon
dioxide, carbon monoxide, and nitric oxide diluted in argon and monitoring the radiation
from the CO + O - CO 2 + hv reaction. The intensity of this radiation is proportional to
the product of the carbon monoxide and oxygen atom concentrations (ref. 7), and there-
fore it provides a means for monitoring changes in the product [O][CO]. Kinetic informa-
tion on the reaction H + NO - N + OH was obtained by comparing the measured [O][CO] pro-
files with computations based on a detailed chemical mechanism for the H2 -CO-CO 2 -NO
reaction system.

SYMBOLS

k rate coefficient, cm 3/mol-sec for bimolecular reactions, cm6/mol2-sec
for termolecular reactions

[O], [CO] concentrations of oxygen atom and carbon monoxide, respectively, mol/cm 3

p pressure, mm Hg or atm (1 mm Hg = 133.3 Pa; 1 atm = 101.3 kPa)

T absolute temperature, K

tj laboratory time, psec

Subscripts:

1 initial value prior to shock heating

2 average value immediately behind shock
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EXPERIMENTAL APPARATUS AND PROCEDURE

All experimental data were obtained behind incident shock waves in a stainless-steel

shock tube with internal diameter of 8.9 cm. The tube had a 214-cm-long driver section

and a 580-cm-long driven section. Plastic diaphragms clamped between the driver and

driven sections were ruptured by increasing the pressure in the driver section. Helium

was used as the driver gas. The velocity of the shock wave was measured with a raster

system (ref. 8) upon which timing marks were superimposed at 10-psec intervals. Test

gas mixtures were prepared by the method of partial pressures from ultrapure research-

grade commercial gases without further purification.

Radiation from the shocked gas was monitored through a calcium fluoride window.

A quartz lens was used to image the light from the center of the tube onto the entrance slit

of a 0.5-m Czerny-Turner type of monochromator with a 1200 lines/mm grating blazed

at 3000 A (1 A = 0.0001 jm). The monochromator was set to pass radiation at 3660 A

with a 32-A half-width. The light from the exit slit of the monochromator was detected

by a 9558Q photomultiplier, and the resulting signal was fed to an oscilloscope. The

sweep of the oscilloscope was triggered by a signal from a platinum resistance gage

located 39.2 cm from the observation point. The sweep speeds and the delay generator

of the oscilloscope were periodically calibrated with a crystal oscillator. The time con-

stant of the recording system was 1.5 psec for all the experimental tests. The transit

time of the incident shock past the window was less than 2 psec.

A quantitative relationship between the intensity of the emission from the reaction

O + CO - CO 2 + hv and the concentration product [OJ[COJ was obtained by calibrating the

optical system with the radiation produced by shock heating various H 2 -0 2 -CO-CO 2 -Ar

gas mixtures. Additional details of the calibration procedure are given in reference 9.

Experiments were carried out with the gas mixtures listed in table I. The results

from experiments with mixture 1 were used to verify the assumed reaction scheme for

the H2 -CO-CO2-Ar system. An oscilloscope tracing of the emission from a test with

mixture 1 is shown in figure 1. Similar emission profiles were obtained from tests at

2460 and 2950 K with mixture 2 which contains 1 percent NO. Data on [O][CO] as a func-

tion of laboratory time tl were read from oscillograms, such as figure 1, with an opti-

cal comparator. The [O][CO] profiles determined in this way are shown in figures 2

and 3 with the calculated results that are discussed in the following section. Each figure

represents the average of two identical runs. The vertical bars represent the uncertainty

in the [O][CO] product calculated from the oscillogram traces. This uncertainty was deter-

mined from results of the calibration experiments and from the ratio of observed signal

to noise from each test. The temperature T 2 and pressure P2 are the average values

immediately behind the shock, assuming no reaction; pl is the initial gas pressure in

the test section prior to shock heating.
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DISCUSSION OF RESULTS

In order to evaluate the experimental results in terms of a kinetic scheme, the
experimental [O][CO] profiles were compared with the results obtained from an analyti-
cal study of the reaction mechanism and rate coefficients given in table II. The rate
coefficients listed in table II were taken from references 4 to 6 and 10 to 26. The [O][CO]
product profile was determined from [0] and [CO] profiles calculated by means of a non-
equilibrium computer program (ref. 26). This program numerically integrated the reac-
tion rate equations subject to the constraints imposed by the conservation equations for
a shock wave and the effect of boundary-layer formation behind the shock wave.

In the analytical study, the rate coefficients for all reactions listed in table II were
varied individually by factors of up to 10, and the effect on the calculated [O][CO] proiiles
was noted. The results of this parametric study were as follows. Reactions (1), (2),
and (10) had the most significant effect on the calculated [O][CO] profiles for the H2 -CO-
CO 2 -Ar reaction system (mixture 1). The H2 -CO-CO2-Ar reaction scheme and rate
coefficients listed in table II (reactions (1) to (11)) reproduced reasonably well the meas-
ured [O][CO] profiles for mixture 1. (See fig. 2.)

For the H2 -CO-CO2-NO-Ar reaction system (mixture 2), reactions (1), (2), (10),
and (12) to (16) had the most significant effect on the calculated [O][CO] profiles. The
parametric study also revealed that reactions (17) to (25) could be omitted from the
H2 -CO-CO 2 -NO-Ar reaction scheme without measurably affecting the calculated [O11CO]
profiles. These reactions made no appreciable contribution to the overall rate of the
reaction under the test conditions.

Since the rate coefficients selected for reactions (1), (2), and (10) resulted in very
good agreement between the calculated and measured [O][CO] profiles for mixture 1, any
differences between the calculated and measured [O][CO] profiles for mixture 2 were
assumed to be the result of reactions (12) to (16). There were, however, no measurable
differences between the calculated and measured results for mixture 2. The rate coeffi-
cients selected for reactions (12) to (16) reproduced the measured profiles very well.
(See fig. 3.)

The effect of reactions (15) and (16) and reaction (14) on the [O][CO] product is
shown in figure 4. The catalytic dissociation of molecular hydrogen, reactions (15)
and (16), plays an important role during the initial stages of the reaction, whereas reac-
tion (14) becomes important during the later stages. As shown in figure 4, reaction (14)
must be included in the reaction mechanism to obtain agreement with the experimental
results. Adjusting the rate coefficient for reaction (14) up to 30 percent also gave good
agreement. It was not possible to adjust the rate coefficients for reactions (15) and (16),
while omitting reaction (14), and still obtain reasonable agreement between the calculated
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and measured [O][CO] profiles. The rate coefficients for reactions (12) and (13) are

known very well; therefore, no adjustment to these values seemed justified.

CONCLUDING REMARKS

By an experimental and analytical study of the kinetics of the H2 -CO-CO2-NO-Ar

reaction system, it was determined that the low-temperature rate coefficient for the

reaction between the nitrogen atom and the hydroxyl radical,

N + OH - NO + H

is also adequate to describe the rate of this reaction at high temperatures. Therefore,

the use of the low-temperature rate coefficient for this reaction in high-temperature

nitric oxide formation schemes is justified.

It was also determined that nitric oxide plays a significant role in the catalytic dis-

sociation of molecular hydrogen through the reaction sequence

H2 + NO ' HNO + H

HNO + Ar - H + NO+ Ar

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., February 28, 1975.
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TABLE I.- COMPOSITION OF EXPERIMENTAL GAS MIXTURES

Chemical Percent by mole in -

species Mixture 1 Mixture 2

H2  4 4

CO 2 2

CO 2  1 1

NO 0 1

Ar 93 92
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TABLE II.- H2 -CO-CO2-NO-Ar REACTION MECHANISM

Reaction Rate coefficient, k Refs.

(a)

(1) H 2 + Ar - 2H + Ar 9.35 x 1013 exp(-44740/T) 10

(2) CO2 + Ar - C O + O + Ar Obtained from k- 2 = 6.x 1013 11

(3) OH + H2 - H 2 0 + H 5.2 x 1013 exp(-3271/T) 12

(4) H + 02 - OH + O 1.22 x 10 1 7 T - 0 .9 0 7 exp(-8369/T) 13

(5) O + H2 - OH + H 2.07 x 1014 exp(-6920/T) 13

(6) OH + CO - CO 2 + H 4.0 x 1012 exp(-4026/T) 12

(7) CO + 02 - CO2 + O 1.6 x 1013 exp(-20634/T) 14

(8) OH + OH - H2 0 + O 5.5 x 1013 exp(-3523/T) 12

(9) 02 + Ar - 20 + Ar 1.4 x 102 1 T- 1 . 8 exp(-59400/T) 15

(10) H + OH + Ar - H2 0 + Ar 8.4 x 102 1 T - 2 . 0  16

(11) H2 + 02 - OH + OH 1.7 x 1013 exp(-24232/T) 17

(12) O0 + NO - N + 02 3.2 x 109 T exp(-19677/T) 4

(13) N + NO -O + N2  3.1 x 1013 exp(-168/T) 5

(14) H + NO - N + OH Obtained from k- 14 =4 x1013 6

(15) H 2 + NO - HNO + H 1.4 x 1013 exp(-27630/T) 18, 19

(16) HNO + Ar - H + NO+ Ar 1.0 x 10 1 9 T-1.0 exp(-23150/T) 18, 19
(17) HNO + NO - N 2 0 + OH 2.0 x 1012 exp(-13085/T) 19

(18) H + N2 0 - N2 + OH 4.0 x 1013 exp(-6039/T) 20

(19) N 2 0 + Ar - N2 + O + Ar 1.2 x 1013 exp(-22194/T) 21

(20) OH + HNO - NO + H2 0 9.0 x 1013 18

(21) N2 0 + CO - N2 + CO02 2.1 x 1011 exp(-8706/T) 22

(22) NO + CO2 - NO2 + CO Obtained from k_2 2 = 1.2 x 1013 exp(-15903/T) 23

(23) NO + N2 0 - NO2 + N 2  2.0 x 1014 exp(-25163/T) 24

(24) NO + NO - N2 0 + O 2.4 x 1010 exp(-14595/T) 25

(25) NO2 + Ar - NO + O + Ar 1.1 x 1016 exp(-32713/T) 26

aThe units for k are cm3/mol-sec for bimolecular reactions and cm6/mol2-sec
for termolecular reactions. Subscripts to k correspond to reaction number; negative
subcripts denote reverse reactions.
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Figure 1.- Oscillogram tracing of the emission

profile for the H 2 -CO-CO2-Ar gas mixture.

T2 = 2910 K; p2 = 0.98 atm; 50 psec/cm

sweep.
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(a) p1 = 20 mm Hg; T 2 = 2690 + 60 K; p 2 = 0.90 + 0.05 atm.

Figure 2.- Calculated and experimental [OJ[CO] profiles for H2 -CO-CO 2 -Ar

gas mixture.
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(b) pl = 20 mm Hg; T2 = 2920 +± 20 K; p 2 =0.99 ± 0.01 atm.

Figure 2.- Concluded.
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(a) pl = 40 mm Hg; T 2 = 2960 ± 20 K; p 2 = 1.64 ± 0.03 atm.

Figure 3.- Calculated and experimental [O][CO] profiles for H 2 -CO-CO2-NO-Ar

gas mixture.
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(b) pl 20 mm Hg; T 2  2950 ± 30 K; p2 = 1.01 + 0.03 atm.

Figure 3.- Concluded.
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H+NO-+N+0Hreaction
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Figure 4.- Calculated [O][CO] profiles for complete mechanism (reactions (1) to (16)),
without H + NO - N + OH reaction (reaction (14)), and without HNO reactions

(reactions (15) and (16)). pl = 40 mm Hg; T 2 = 2460 K; p 2 = 1.64 atm.
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